Группа компаний «СИСТЕМОТЕХНИКА»

СИСТЕМНЫЙ ПОДХОД В РАЗРАБОТКЕ ДИНАМИЧЕСКИХ КОМПЬЮТЕРНЫХ ТРЕНАЖЕРОВ

ПРОБЛЕМА

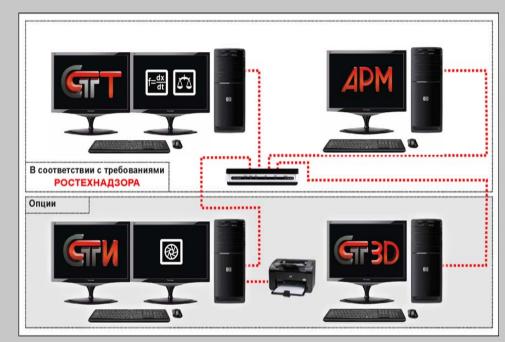
 Дефицит квалифицированных кадров в промышленности (Усложнение технологических процессов, снижение уровня образования)

• Аварийные ситуации, обусловленные влиянием человеческого фактора

 Финансовые потери из-за нештатных и аварийных ситуаций, возникших вследствие человеческого фактора

• Требования РОСТЕХНАДЗОРА Российской Федерации (Приказ №96 от 11.03.2013 г., п. 2.11)

РЕШЕНИЕ


Динамические компьютерные тренажеры или Виртуальные Тренажерные Системы (ВТС)

Область применения:

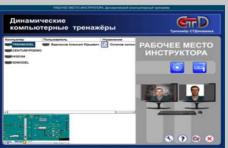
- Промышленные предприятия
- Учебные заведения
- Центры повышения квалификации
- Учебные центры

Назначение:

- Снижение влияния человеческого фактора
- Обучение безопасной эксплуатации
- Обучение локализации аварии
- Повышение квалификации
- Контрольное тестирование
- Изучение технологии, тренинг
- Изучение АРМ оператора

РЕШЕНИЕ

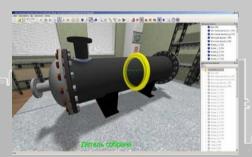
Динамические компьютерные тренажеры или Виртуальные Тренажерные Системы (ВТС)

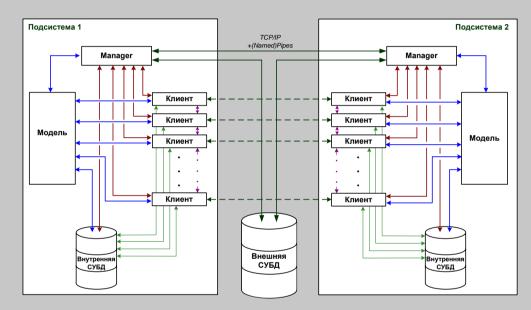

Область применения:

- Промышленные предприятия
- Учебные заведения
- Центры повышения квалификации
- Учебные центры

Назначение:

- Снижение влияния человеческого фактора
- Обучение безопасной эксплуатации
- Обучение локализации аварии
- Повышение квалификации
- Контрольное тестирование
- Изучение технологии, тренинг
- Изучение APM оператора

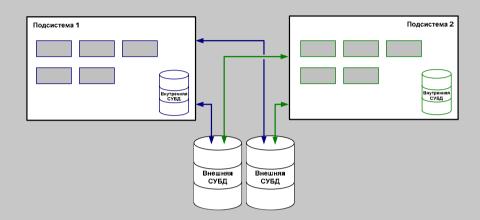




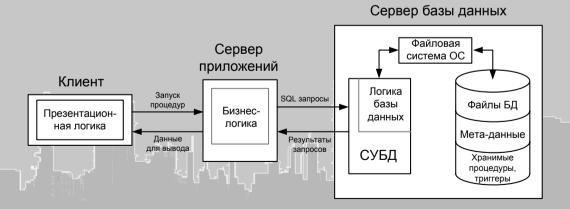
ВИРТУАЛИЗАЦИЯ

Основные принципы построения подсистем динамических компьютерных тренажеров «СТДинамика»

- Гибкость
- Модульность
- Масштабируемость
- Иерархичность
- Строго описанные, наследуемые, расширяемые на основе версий интерфейсы подключения модулей к каркасу подсистемы
- Кросс- и многоплатформенность
- Независимость от конкретных инструментальных сред разработки ПО
- Блок-модули по принципам «черного ящика»
- TDD (Test driven development)
- loT (Internet of Things)
- PAAS (Programm As A Service)
- Cloud Service

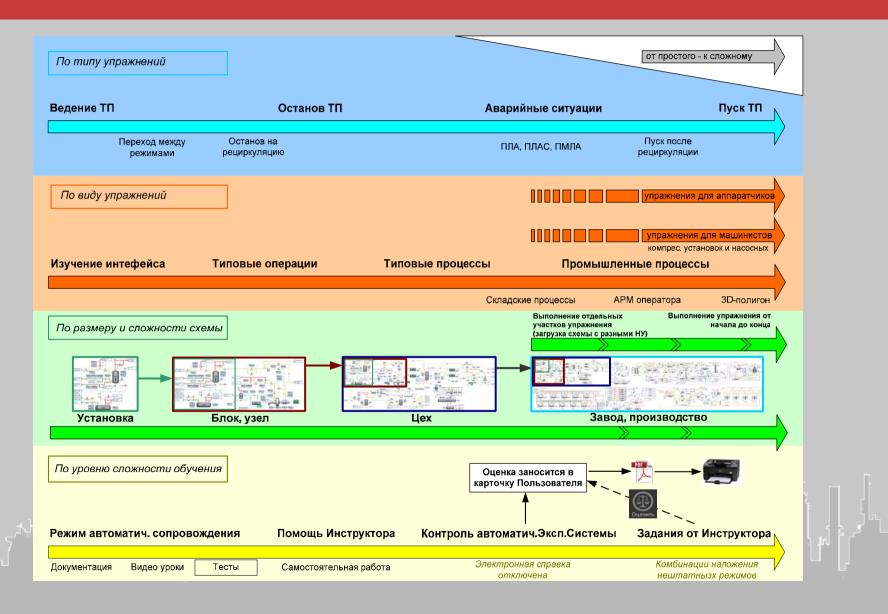


ВИРТУАЛИЗАЦИЯ


Взаимодействие подсистем с СУБД

СУБД – SQL версии:

- от простейших (SQLite)
- через бесплатные СУБД «среднего класса» (MySQL, FireBird, PostgreSQL)
- до проприетарных СУБД «супер-класса» (Oracle, MSSQL Server, DB2)



Трехзвенная архитектура «клиент-сервер» (архитектура с тонким клиентом)

ОБУЧЕНИЕ И КОНТРОЛЬ

ЛИЦЕНЗИРОВАНИЕ И СЕРТИФИКАТЫ

Пакет программ «СТДинамика» (российская разработка)

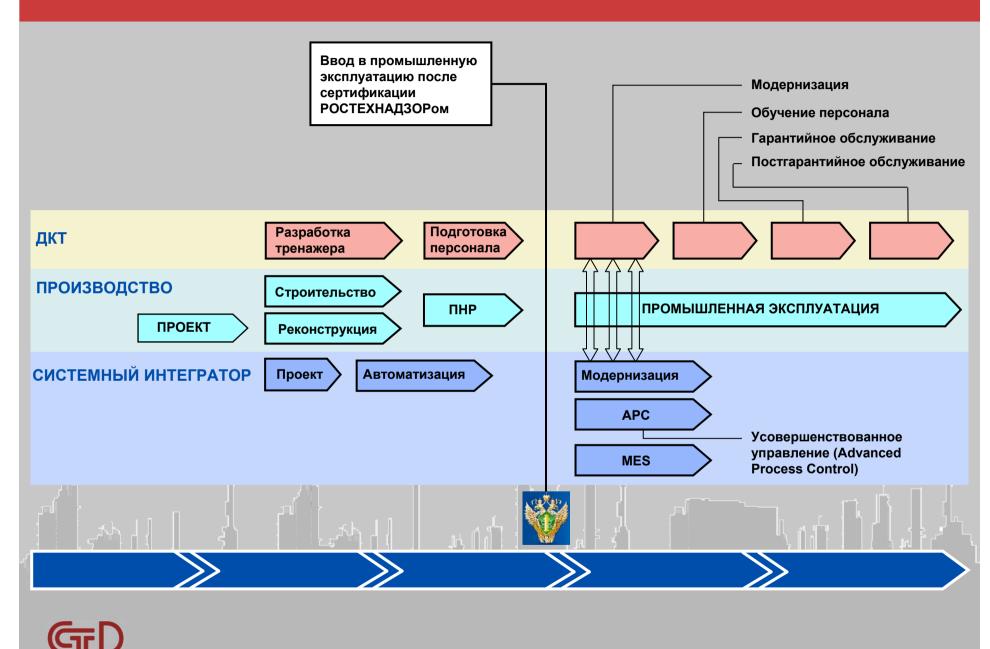
- Модуль расчета математических моделей st.exe
- Модуль автоматич. экспертной системы expert.dll
- Эмулятор APMa оператора-технолога stARM.exe
- Рабочее место Инструктора inst.exe
- Агент Инструктора stAgent.exe
- Загрузочная оболочка stDShell.exe
- Конфигуратор БД OraEncConfig.exe
- Редактор APMa оператора-технолога stARMtdit.exe
- Редактор автом. экспертной системы expertiza.exe
- Редактор списка упражнений exercize.exe
- Редактор математических моделей stedit.exe

Лицензирование программного продукта для конечного Пользователя

Характеристики лицензии:

- Корпоративная
- Бессрочная
- Простая неисключительная

Разработчики тренажера (квалифицированные специалисты)



Квалификации разработчиков:

- Инженер технолог
- Инженер АСУ ТП
- Инженер по ІТ-технологиям
- Разработчик документации

ЖИЗНЕННЫЙ ЦИКЛ ПРОИЗВОДСТВА И ТРЕНАЖЕРА

ПРИМЕР РАЗРАБОТАННЫХ ТЕХНОЛОГИЧЕСКИХ СХЕМ

Отделение стабилизации конденсата ТЛ-1 (Пуровский ЗПК)

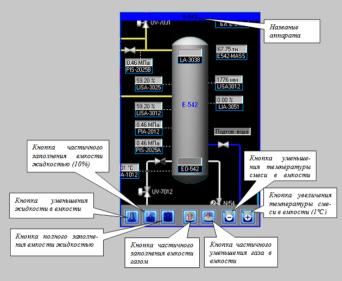

Отделение фракционирования газа (Пуровский ЗПК)

Установка по переработке стабильного конденсата (Усть-Луга)

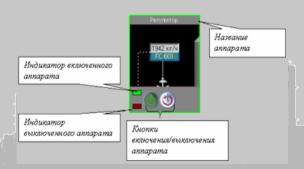
Товарно-сырьевой резервуарный парк и причальная зона (Усть-Луга)

Склад сжиженного углеводородного газа (Усть-Луга)

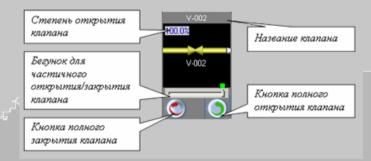
ЭЛЕМЕНТЫ УПРАВЛЕНИЯ


Панели управления приборами

Панели управления регулирующим клапаном


Степень открытия ре-Текущее значение регугулирующего клапана в лируемого параметра в цифровом отображении цифровом отображении X FIC007 переключения регулятора в автоматический режим работы _РУЧ Уставка регулятора переключения регулятора в ручной режим работы ABT Текущий режим работы регулятора Кнопки изменения уставки регулятора Текущее значение регули-Степень открытия регуруемого параметра в лирующего клапана графическом отображеграфическом отображе-

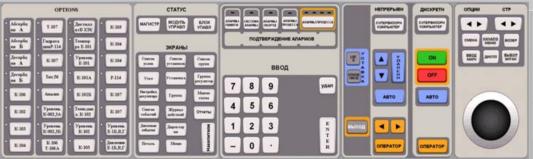
25219 25219 25219 25219 2


Панель управления емкостью

Панель включения прибора

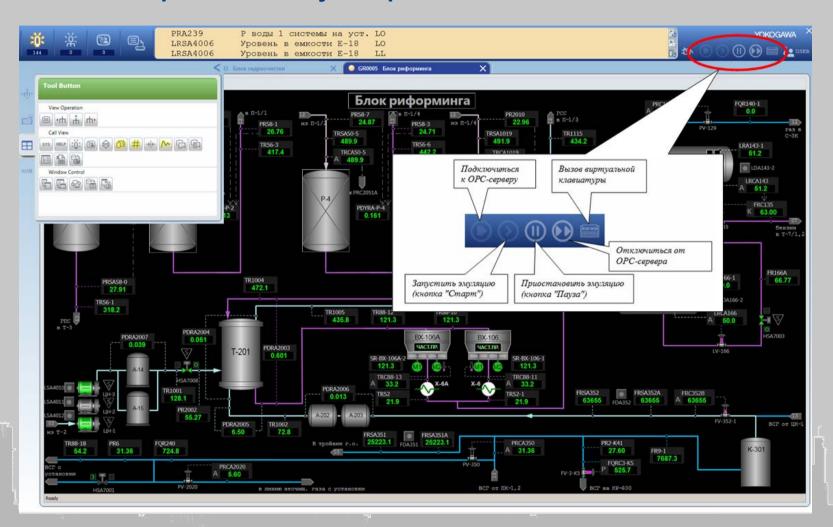
Панель ручного управления клапаном/задвижкой

Панель управления генератором/приемником



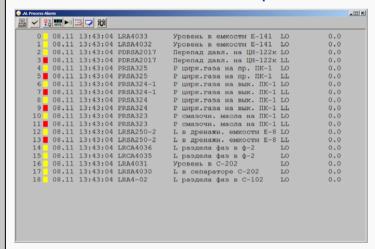
ЭЛЕМЕНТЫ УПРАВЛЕНИЯ

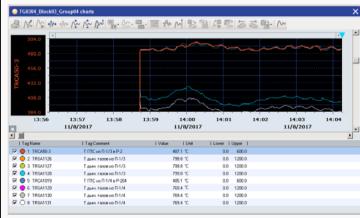
Виртуальные функциональные клавиатуры и панели локальной автоматики



АРМ ОПЕРАТОРА НА БАЗЕ ЭМУЛЯТОРА РСУ

Обзорное окно эмулятора РСУ CENTUM VP YOKOGAWA



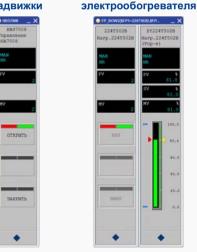

АРМ ОПЕРАТОРА НА БАЗЕ ЭМУЛЯТОРА РСУ

Элементы интерфейса

Окно системных сообщений

Окно трендов

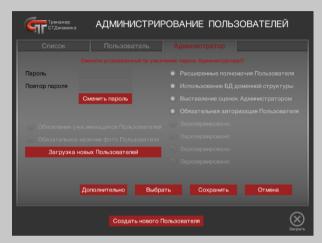
Окно исторического архива

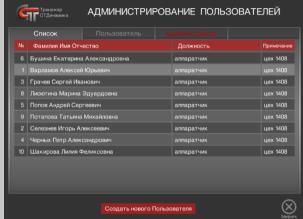

Historical Report	- [Operation and Monitoring Message]				_10
Message No	Date	Message Text			
1601	08.11 13:56:39	LRCA166	Уровень в С-7	MV = 79.2 % old= 84.3 [TESTUSE	
1401	08.11 13:56:32	LRCA166	Уровень в С-7	MAN	
1603	08.11 13:56:32	LRCA166	Уровень в С-7	MAN old=AUT [TESTUSER@HIS0164]	
1608	08.11 13:50:09	нв37008	Управление НЗА7008	MV =OTKPHTh old=OTKPHTh [TEST	
1608	08.11 13:50:09	нва7008	Управление НЗА7008	MV =OTKPNTb old=SAKPNTb [TEST	
1101	08.11 13:47:50	PRA239	Р воды 1 системы на уст.	NR NA	
1101	08.11 13:47:50	LRSA4006	Уровень в емкости Е-10	NR NA	
1101	08.11 13:47:50	LRSA4006	Уровень в емкости Е-18	NR NA	
1101	08.11 13:47:50	LRSA4005	Уровень в Е-19	NR NA	
1101	08.11 13:47:50	LRSA4005	Уровень в Е-19	NR NA	
1101	08.11 13:47:50	LRA4-05-2	Уровень р-ра ДХЭ в Е-119	NR NA	
1101	08.11 13:47:50	LRA4-05-1	Уровень р-ра ДХЭ в Е-118	NR NA	
1101	08.11 13:47:50	PRA361B-2	Р в труб.смаз.масла ЦК-1	NR NA	
1101	08.11 13:47:50	PRSA361B-1	Р в труб.смаз.масла ЦК-1	NR NA	
1101	08.11 13:47:50	PRSA361B-1	Р в труб.смаз.масла ЦК-1	NR NA	
1101	08.11 13:47:50	LR8A375-5-1	Уровень масла в С-2к	NR NA	
1101	08.11 13:47:50	LRSA375-5-1	Уровень масла в С-2к	NR NA	
1101	08.11 13:47:50	PRSA335	Р цирк.газа на пр. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA335	Р цирк.газа на пр. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA334-1	Р цирк.газа на вык. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA334-1	Р цирк.газа на вык. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA334	Р цирк.газа на вык. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA334	Р цирк.газа на вык. ПК-2	NR NA	
1101	08.11 13:47:50	PRSA333	Р смавочи, масла на ПК-2	NR NA	
1101	08.11 13:47:50	PRSA333	Р смавочн. масла на ПК-2	NR NA	
1101	08.11 13:47:50	PRSA118	Р охлажд. воды к ПK-2	NR NA	

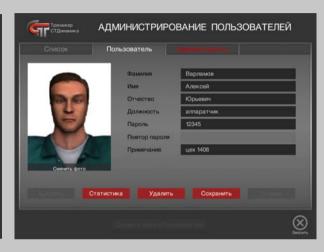
Панель

Панель

Панель отсекателя, задвижки

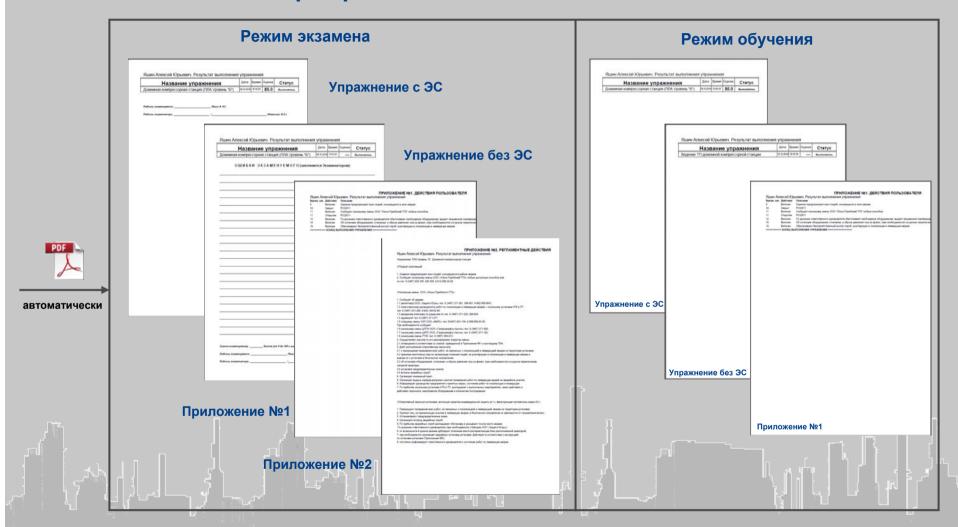

Панели ПИД-регуляторов



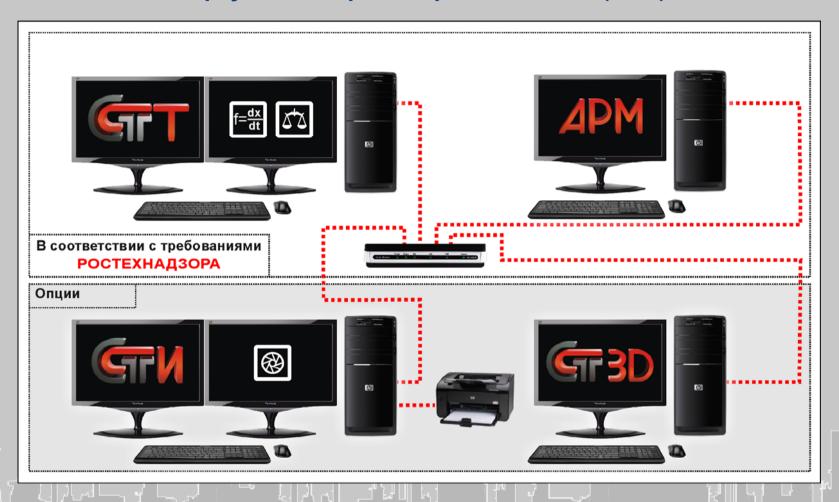


АДМИНИСТРИРОВАНИЕ ПОЛЬЗОВАТЕЛЕЙ

Окна регистрации Пользователя и статистики выполнения упражнений



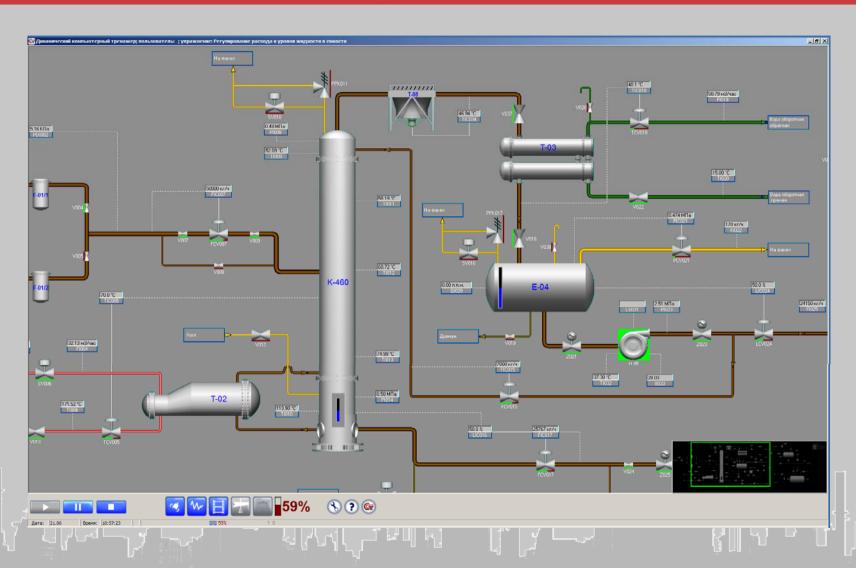
АДМИНИСТРИРОВАНИЕ ПОЛЬЗОВАТЕЛЕЙ


Формирование отчета автоматически

ПОЛНОМАСШТАБНЫЙВАРИАНТ ТРЕНАЖЕРОВ ДЛЯ ПРЕДПРИЯТИЙ ХИМИИ И НЕФТЕХИМИИ

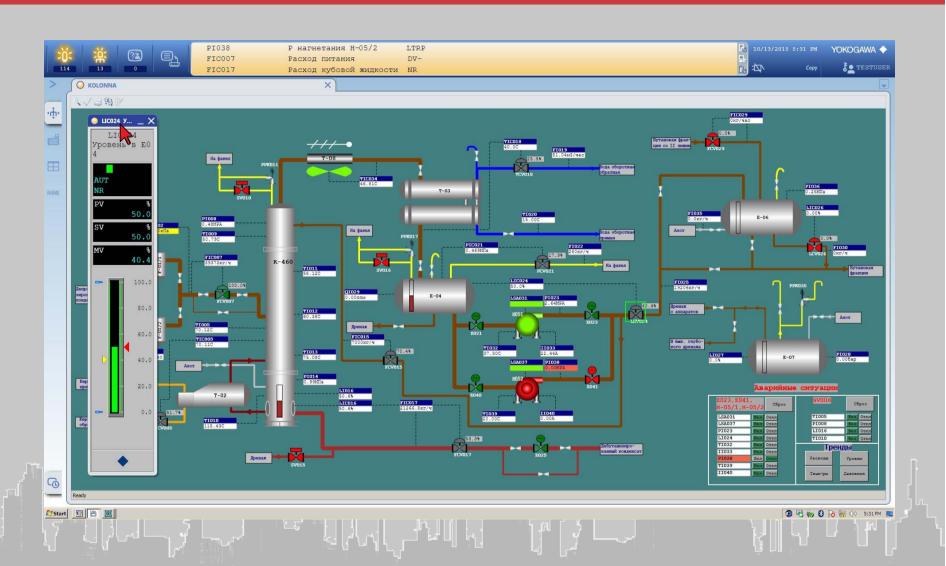
Виртуальная тренажерная система (ВТС)

СХЕМА СООТВЕТСТВИЯ МЕЖДУ ТРЕНАЖЕРОМ И РЕАЛЬНЫМ ПРОИЗВОДСТВОМ


СТИ - Рабочее Место Инструктора

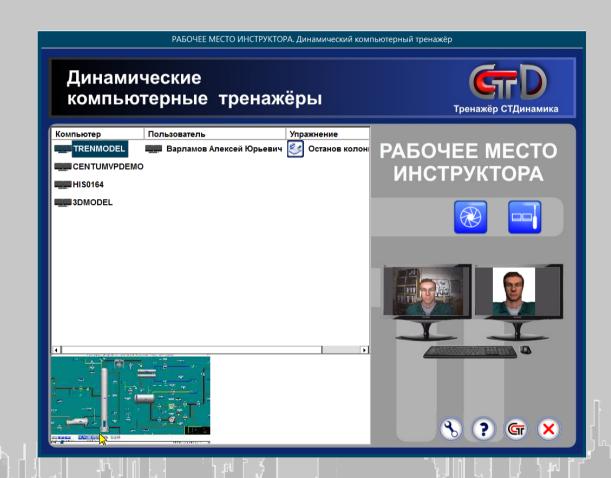
СТТ – Математическая модель тех. процесса и СУ

APM – Автоматизированное рабочее Место Оператора **CT3D** – 3D-имитация технологической площадки



ДИНАМИЧЕСКАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО (АРМ) ОПЕРАТОРА



РАБОЧЕЕ МЕСТО ИНСТРУКТОРА

Контроль действий Пользователя

- Режим просмотра рабочего места Пользователя
- Режим просмотра всех элементов рабочего места Обучаемого
- Режим обзора действий, выбранного Пользователя
- Режим внесения изменений в среде Пользователя
- Режим записи макросов

АВТОМАТИЧЕСКАЯ ЭКСПЕРТНАЯ СИСТЕМА

Оценка действий Пользователя

Критерии оценки

- Последовательность выполнения действий
- Конечное состояние исполнительных механизмов (ИМ)
- Многократные переключения оборудования и ИМ (пуск/останов, открыть/закрыть)
- Многократные переключения
 Режимов работы регуляторов
 (ручное управление/автомат)
- Регламентные нормы
- Несвоевременное выполнение условия
- Оценка выполнения упражнения Пуск колонны дебутанизации К-460 ОШИБКА Штраф Конечное состояние должен быть переведен в автом, режим работы FIC007 в конце упражнения 2.65% 2.65% должен быть переведен в автом, режим работы FIC015 в конце упражнения должен быть включен насос поз.Н-05/А в конце упражнения 2.65% 2.00% время выполнения упражнения меньше 15 мин. Переключения не переводился в автом, режим работы FIC007 1.97% несвоевременно открыт вентиль поз. V013: параметр: "Уровень в кубе колонны, %" имел значение ниже 3. 3.93% 1.97% не включался насос поз.Н-05/А Последовательность действий 0.33% вентиль поз. V020 должен быть закрыт раньше, чем начал открываться регулирующий клапан поз. TCV018 0.33% вентиль поз. V002 должен быть открыт раньше, чем открыт отсекающий клапан поз. SV001 0.33% вентиль поз. V004 должен быть открыт раньше, чем открыт отсекающий клапан поз. SV001 Регламентные нормы параметр: "Расход питания, кг/час" принимал значение ниже 49000 кг/час 1.43% Итоговая оценка: 10% Минимальный результат для выполнения упражнения: 80%. УПРАЖНЕНИЕ НЕ ВЫПОЛНЕНО
- Несоблюдение скорости изменения параметров
- Несоблюдение требуемой продолжительности упражнения

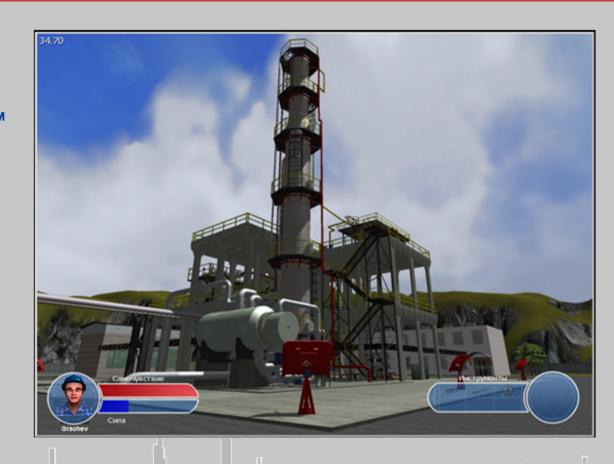
Автоматическая экспертная система производит оценку действий Пользователя и выдаёт результат в процентах

виртуальный полигон

Перемещение по установке

- Бег и ходьба
- Подъем на отметки
- Подъем по вертикальным лестницам
- Насосная
- Операторная

Работа на установке


- Открытие-закрытие задвижки
- Включение-выключение электродвигателя насоса

Работа с предметами

- Перемещение объектов
- Фонарь
- Пожарный гидрант
- Противогаз
- Огнетушитель

Контроль параметров ТП

- Уровень
- Температура
- Давление

РАЗВИТИЕ ВТС (базовые модули)

Динамическая Математическая Модель

АРМ-оператора

Оценка Действий Пользователя

Виртуальный **полигон**

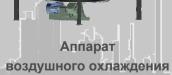
Конструктор изделий

- Штатные ситуации (Пуск, Ведение ТП, Останов)
- ПЛАС (аварийные и нештатные ситуации)
- Подключение к проекту РСУ
- Эмулятор РСУ
- Автоматическая экспертная система
- Рабочее Место Инструктора
- Ориентированность на технологические процессы
- Ориентированность на работу с отравляющими веществами
- Ориентированность на Электробезопасность
- Ориентированность на Охрану Труда
- Технологические аппараты и агрегаты
- Электрооборудование

КОНСТРУКТОР ИЗДЕЛИЙ

Промышленное оборудование

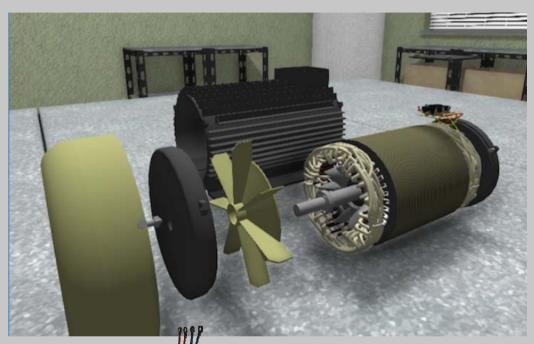

Визуализация


- Трёхмерных моделей конструкций
- Составных элементов модели
- Способы крепления сборочных единиц и деталей

Реализация

- Разборки трёхмерных моделей на сборочные единицы
- Сборки модели в единое целое
- Изучение деталей в разных плоскостях
- Изучение разрезов деталей

Деталь собрана



Градирня

КОНСТРУКТОР ИЗДЕЛИЙ

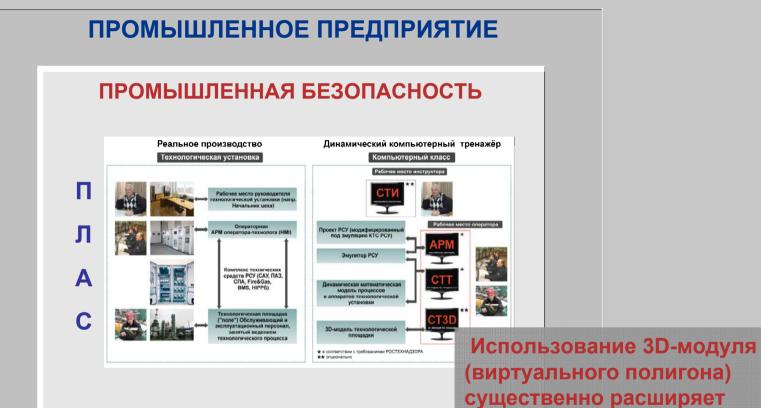
Электрооборудование

АД с короткозамкнутым ротором

АД с фазным ротором

Двухобмоточный трансформатор

Трехфазный масляный трансформатор

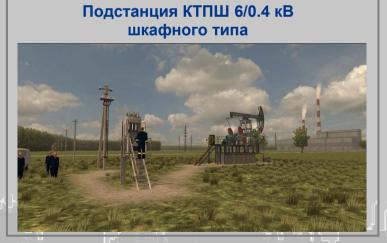

Трехфазный сухой трансформатор

Машина постоянного тока

СФЕРА ОХВАТА НАПРАВЛЕНИЯ ВИРТУАЛЬНЫХ ТРЕНАЖЕРНЫХ СИСТЕМ

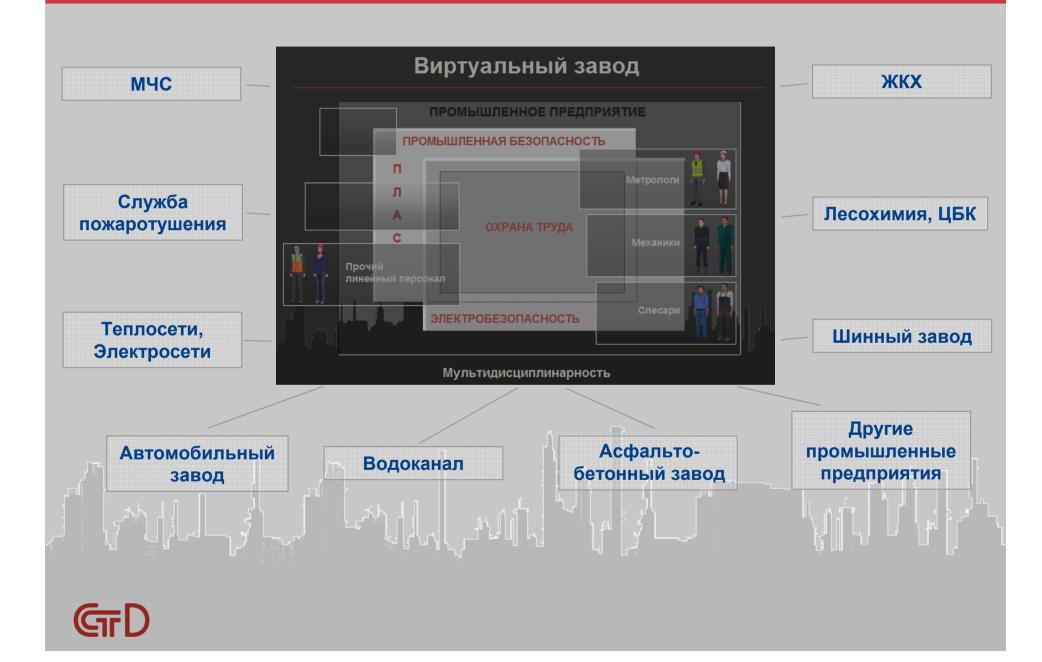
сферу применения ВТС

СФЕРА ОХВАТА НАПРАВЛЕНИЯ ВИРТУАЛЬНЫХ ТРЕНАЖЕРНЫХ СИСТЕМ



ВИРТУАЛЬНЫЙ ПОЛИГОН

Электробезопасность


СФЕРА ОХВАТА НАПРАВЛЕНИЙ ВТС

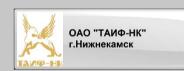
Концепция виртуального завода

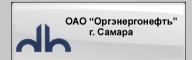
ВЕКТОРЫ РАЗВИТИЯ ВТС

виртуальный полигон

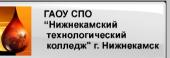
Создание МУЛЬТИдисциплинарных 3D-полигонов для обучения и переподготовки специалистов по нескольким различным специальностям

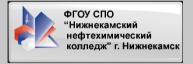
ВНЕДРЕНИЯ

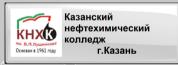

TATAPCTAH

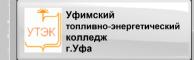


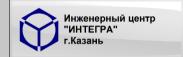
РОССИЯ






УЧЕБНЫЕ ЗАВЕДЕНИЯ




ПАРТНЁРЫ

ДОПОЛНИТЕЛЬНЫЙ РАЗДЕЛ №1

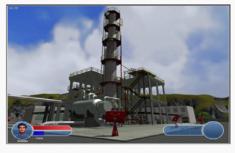
виртуальный полигон

Пространственная модель 3D - объектов

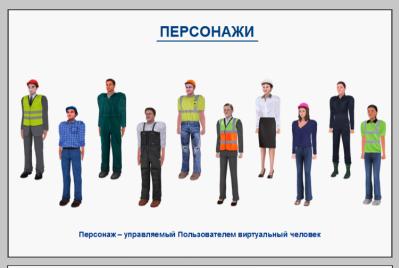
возможности полигона

Перемещение по установке

- Бег и ходьба
- Подъем на отметки
- Подъем по вертикальным лестница
- Насосная
- Операторная


Работа на установке

- Открытие-закрытие задвижки
- Включение-выключение электродвигателя насоса


Работа с предметами

- Перемещение объектов
- Фонарь Пожарный гидрант
- Противогаз
- Огнетушитель
- Контроль параметров ТП
- Уровень
- Температура
- Давление

виртуальный полигон

Персонажи

Персонаж – управляемый Пользователем виртуальный человек

ОХРАНА ТРУДА

Средства индивидуальной защиты

- Противогаз
- Аппарат сжатого воздуха АСВ-2
- Костюм хим. защиты
- Каска

Средства пожаротушения

- Огнетушитель пенный
- Песок
- Лафетный ствол

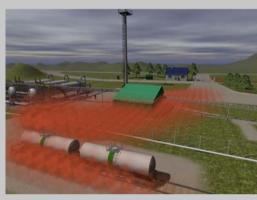
Инвентарь

- Фонарь
- Гаечный ключ
- Другой инструмент

виртуальный полигон

Средства передвижения

Средства транспортировки



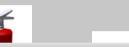
ВИРТУАЛЬНЫЙ ПОЛИГОН

ПЛАС, ПМЛА, ПЛА

Моделируемые аварийные ситуации

- Утечка газа с образованием облака
- Утечка жидкости с образованием зоны пролива
- Воспламенение паровоздушной смеси
- Взрыв газовоздушной смеси
- Отравление персонала в случае попадания в загазованную зону без средств защиты
- Химический ожог персонала в случае розлива кислот и щелочей
- Срабатывание датчиков загазованности
- Отказ оборудования: задвижек, насосов, обрыв кабелей, разгерметизация оборудования, отключение электроэнергии
- Неисправность или выработка инвентаря: огнетушителя, противогаза, фонаря и др.
- Поражение электрическим током
- Прочие ситуации

РЕШЕНИЕ в сфере охраны труда



ДОПОЛНИТЕЛЬНЫЙ РАЗДЕЛ №2

РЕШЕНИЕ в сфере электроэнергетики

На наших виртуальных 3D-полигонах:

- достигается **полная имитация** электрооборудования, систем электроснабжения и действий на объекте
- осуществляется параллельное моделирование всех явлений природного и техногенного характера на объекте
- справочная система доходчиво объясняет принцип действия и связи оборудования
- экспертная система тестирует, анализирует и сохраняет статистику достижений

ПРЕДЛОЖЕНИЕ в сфере электроэнергетики

world **skills** Russia

Мы готовы к развитию, адаптации и внедрению наших решений в области профподготовки и охраны труда на объектах энергетики и для подготовки и проведения соревнований по электромонтажу и ремонту электрооборудования на соревнованиях типа:

МУЛЬТИДИСЦИПЛИНАРНОСТЬ

БАЗОВЫЕ КОМПОНЕНТЫ

Динамические мат. модели

Эмулятор РСУ

СВОЙСТВА

Модульность

Гибкость

Масштабируемость

ОПЦИИ

Рабочее Место Инструктора

Экспертная система оценки действий Пользователя

Личная карточка Пользователя

Средства предтренажёрной подготовки

Система разработки тренинга по ПЛАСу

Виртуальный полигон

Конструктор

МУЛЬТИДИСЦИПЛИНАРНОСТЬ

Обучение производится в единой среде (виртуальный завод) для различных смежных специальностей

Ценообразование

Импортозамещение

Редакторы проекта технологического объекта

ЛИТЕРАТУРА КОМПЬЮТЕРНОГО ТРЕНАЖЕРА

Карта документации

